Metamath Proof Explorer


Theorem trlval2

Description: The value of the trace of a lattice translation, given any atom P not under the fiducial co-atom W . Note: this requires only the weaker assumption K e. Lat ; we use K e. HL for convenience. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlval2.l ˙ = K
trlval2.j ˙ = join K
trlval2.m ˙ = meet K
trlval2.a A = Atoms K
trlval2.h H = LHyp K
trlval2.t T = LTrn K W
trlval2.r R = trL K W
Assertion trlval2 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P ˙ W

Proof

Step Hyp Ref Expression
1 trlval2.l ˙ = K
2 trlval2.j ˙ = join K
3 trlval2.m ˙ = meet K
4 trlval2.a A = Atoms K
5 trlval2.h H = LHyp K
6 trlval2.t T = LTrn K W
7 trlval2.r R = trL K W
8 hllat K HL K Lat
9 8 anim1i K HL W H K Lat W H
10 eqid Base K = Base K
11 10 1 2 3 4 5 6 7 trlval K Lat W H F T R F = ι x Base K | q A ¬ q ˙ W x = q ˙ F q ˙ W
12 11 3adant3 K Lat W H F T P A ¬ P ˙ W R F = ι x Base K | q A ¬ q ˙ W x = q ˙ F q ˙ W
13 simp1l K Lat W H F T P A ¬ P ˙ W K Lat
14 simp3l K Lat W H F T P A ¬ P ˙ W P A
15 10 4 atbase P A P Base K
16 14 15 syl K Lat W H F T P A ¬ P ˙ W P Base K
17 10 5 6 ltrncl K Lat W H F T P Base K F P Base K
18 16 17 syld3an3 K Lat W H F T P A ¬ P ˙ W F P Base K
19 10 2 latjcl K Lat P Base K F P Base K P ˙ F P Base K
20 13 16 18 19 syl3anc K Lat W H F T P A ¬ P ˙ W P ˙ F P Base K
21 simp1r K Lat W H F T P A ¬ P ˙ W W H
22 10 5 lhpbase W H W Base K
23 21 22 syl K Lat W H F T P A ¬ P ˙ W W Base K
24 10 3 latmcl K Lat P ˙ F P Base K W Base K P ˙ F P ˙ W Base K
25 13 20 23 24 syl3anc K Lat W H F T P A ¬ P ˙ W P ˙ F P ˙ W Base K
26 simpl3l K Lat W H F T P A ¬ P ˙ W x Base K P A
27 simpl3r K Lat W H F T P A ¬ P ˙ W x Base K ¬ P ˙ W
28 breq1 q = P q ˙ W P ˙ W
29 28 notbid q = P ¬ q ˙ W ¬ P ˙ W
30 id q = P q = P
31 fveq2 q = P F q = F P
32 30 31 oveq12d q = P q ˙ F q = P ˙ F P
33 32 oveq1d q = P q ˙ F q ˙ W = P ˙ F P ˙ W
34 33 eqeq2d q = P x = q ˙ F q ˙ W x = P ˙ F P ˙ W
35 29 34 imbi12d q = P ¬ q ˙ W x = q ˙ F q ˙ W ¬ P ˙ W x = P ˙ F P ˙ W
36 35 rspcv P A q A ¬ q ˙ W x = q ˙ F q ˙ W ¬ P ˙ W x = P ˙ F P ˙ W
37 36 com23 P A ¬ P ˙ W q A ¬ q ˙ W x = q ˙ F q ˙ W x = P ˙ F P ˙ W
38 26 27 37 sylc K Lat W H F T P A ¬ P ˙ W x Base K q A ¬ q ˙ W x = q ˙ F q ˙ W x = P ˙ F P ˙ W
39 simp11 K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A K Lat W H
40 simp12 K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A F T
41 simp13l K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A P A
42 simp13r K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A ¬ P ˙ W
43 simp3 K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A q A
44 simp2 K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A ¬ q ˙ W
45 1 2 3 4 5 6 ltrnu K Lat W H F T P A ¬ P ˙ W q A ¬ q ˙ W P ˙ F P ˙ W = q ˙ F q ˙ W
46 39 40 41 42 43 44 45 syl222anc K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A P ˙ F P ˙ W = q ˙ F q ˙ W
47 eqeq2 P ˙ F P ˙ W = q ˙ F q ˙ W x = P ˙ F P ˙ W x = q ˙ F q ˙ W
48 47 biimpd P ˙ F P ˙ W = q ˙ F q ˙ W x = P ˙ F P ˙ W x = q ˙ F q ˙ W
49 46 48 syl K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A x = P ˙ F P ˙ W x = q ˙ F q ˙ W
50 49 3exp K Lat W H F T P A ¬ P ˙ W ¬ q ˙ W q A x = P ˙ F P ˙ W x = q ˙ F q ˙ W
51 50 com24 K Lat W H F T P A ¬ P ˙ W x = P ˙ F P ˙ W q A ¬ q ˙ W x = q ˙ F q ˙ W
52 51 ralrimdv K Lat W H F T P A ¬ P ˙ W x = P ˙ F P ˙ W q A ¬ q ˙ W x = q ˙ F q ˙ W
53 52 adantr K Lat W H F T P A ¬ P ˙ W x Base K x = P ˙ F P ˙ W q A ¬ q ˙ W x = q ˙ F q ˙ W
54 38 53 impbid K Lat W H F T P A ¬ P ˙ W x Base K q A ¬ q ˙ W x = q ˙ F q ˙ W x = P ˙ F P ˙ W
55 25 54 riota5 K Lat W H F T P A ¬ P ˙ W ι x Base K | q A ¬ q ˙ W x = q ˙ F q ˙ W = P ˙ F P ˙ W
56 12 55 eqtrd K Lat W H F T P A ¬ P ˙ W R F = P ˙ F P ˙ W
57 9 56 syl3an1 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P ˙ W