Metamath Proof Explorer


Theorem trlval3

Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013)

Ref Expression
Hypotheses trlval3.l ˙ = K
trlval3.j ˙ = join K
trlval3.m ˙ = meet K
trlval3.a A = Atoms K
trlval3.h H = LHyp K
trlval3.t T = LTrn K W
trlval3.r R = trL K W
Assertion trlval3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q R F = P ˙ F P ˙ Q ˙ F Q

Proof

Step Hyp Ref Expression
1 trlval3.l ˙ = K
2 trlval3.j ˙ = join K
3 trlval3.m ˙ = meet K
4 trlval3.a A = Atoms K
5 trlval3.h H = LHyp K
6 trlval3.t T = LTrn K W
7 trlval3.r R = trL K W
8 simpl1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P K HL W H
9 simpl31 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P A ¬ P ˙ W
10 simpl2 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P F T
11 simpr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P F P = P
12 eqid 0. K = 0. K
13 1 12 4 5 6 7 trl0 K HL W H P A ¬ P ˙ W F T F P = P R F = 0. K
14 8 9 10 11 13 syl112anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P R F = 0. K
15 simpl33 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ F P Q ˙ F Q
16 simpl1l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P K HL
17 hlatl K HL K AtLat
18 16 17 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P K AtLat
19 11 oveq2d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ F P = P ˙ P
20 simp31l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q P A
21 20 adantr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P A
22 2 4 hlatjidm K HL P A P ˙ P = P
23 16 21 22 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ P = P
24 19 23 eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ F P = P
25 24 21 eqeltrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ F P A
26 simp1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q K HL W H
27 simp2 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F T
28 simp31 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q P A ¬ P ˙ W
29 simp32 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q Q A ¬ Q ˙ W
30 1 4 5 6 ltrn2ateq K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P = P F Q = Q
31 26 27 28 29 30 syl13anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P F Q = Q
32 31 biimpa K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P F Q = Q
33 32 oveq2d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P Q ˙ F Q = Q ˙ Q
34 simp32l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q Q A
35 34 adantr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P Q A
36 2 4 hlatjidm K HL Q A Q ˙ Q = Q
37 16 35 36 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P Q ˙ Q = Q
38 33 37 eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P Q ˙ F Q = Q
39 38 35 eqeltrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P Q ˙ F Q A
40 3 12 4 atnem0 K AtLat P ˙ F P A Q ˙ F Q A P ˙ F P Q ˙ F Q P ˙ F P ˙ Q ˙ F Q = 0. K
41 18 25 39 40 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ F P Q ˙ F Q P ˙ F P ˙ Q ˙ F Q = 0. K
42 15 41 mpbid K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P P ˙ F P ˙ Q ˙ F Q = 0. K
43 14 42 eqtr4d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P = P R F = P ˙ F P ˙ Q ˙ F Q
44 simpl1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P K HL W H
45 simpl2 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P F T
46 simpl31 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P A ¬ P ˙ W
47 1 2 3 4 5 6 7 trlval2 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P ˙ W
48 44 45 46 47 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F = P ˙ F P ˙ W
49 simpl1l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P K HL
50 49 hllatd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P K Lat
51 20 adantr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P A
52 1 4 5 6 ltrnat K HL W H F T P A F P A
53 44 45 51 52 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P F P A
54 eqid Base K = Base K
55 54 2 4 hlatjcl K HL P A F P A P ˙ F P Base K
56 49 51 53 55 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P Base K
57 simpl1r K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P W H
58 54 5 lhpbase W H W Base K
59 57 58 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P W Base K
60 54 1 3 latmle1 K Lat P ˙ F P Base K W Base K P ˙ F P ˙ W ˙ P ˙ F P
61 50 56 59 60 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P ˙ W ˙ P ˙ F P
62 48 61 eqbrtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F ˙ P ˙ F P
63 simpl32 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P Q A ¬ Q ˙ W
64 1 2 3 4 5 6 7 trlval2 K HL W H F T Q A ¬ Q ˙ W R F = Q ˙ F Q ˙ W
65 44 45 63 64 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F = Q ˙ F Q ˙ W
66 34 adantr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P Q A
67 1 4 5 6 ltrnat K HL W H F T Q A F Q A
68 44 45 66 67 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P F Q A
69 54 2 4 hlatjcl K HL Q A F Q A Q ˙ F Q Base K
70 49 66 68 69 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P Q ˙ F Q Base K
71 54 1 3 latmle1 K Lat Q ˙ F Q Base K W Base K Q ˙ F Q ˙ W ˙ Q ˙ F Q
72 50 70 59 71 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P Q ˙ F Q ˙ W ˙ Q ˙ F Q
73 65 72 eqbrtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F ˙ Q ˙ F Q
74 54 5 6 7 trlcl K HL W H F T R F Base K
75 44 45 74 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F Base K
76 54 1 3 latlem12 K Lat R F Base K P ˙ F P Base K Q ˙ F Q Base K R F ˙ P ˙ F P R F ˙ Q ˙ F Q R F ˙ P ˙ F P ˙ Q ˙ F Q
77 50 75 56 70 76 syl13anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F ˙ P ˙ F P R F ˙ Q ˙ F Q R F ˙ P ˙ F P ˙ Q ˙ F Q
78 62 73 77 mpbi2and K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F ˙ P ˙ F P ˙ Q ˙ F Q
79 49 17 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P K AtLat
80 simpr K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P F P P
81 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
82 44 46 45 80 81 syl112anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F A
83 54 3 latmcl K Lat P ˙ F P Base K Q ˙ F Q Base K P ˙ F P ˙ Q ˙ F Q Base K
84 50 56 70 83 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P ˙ Q ˙ F Q Base K
85 54 1 12 4 atlen0 K AtLat P ˙ F P ˙ Q ˙ F Q Base K R F A R F ˙ P ˙ F P ˙ Q ˙ F Q P ˙ F P ˙ Q ˙ F Q 0. K
86 79 84 82 78 85 syl31anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P ˙ Q ˙ F Q 0. K
87 86 neneqd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P ¬ P ˙ F P ˙ Q ˙ F Q = 0. K
88 simpl33 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P Q ˙ F Q
89 2 3 12 4 2atmat0 K HL P A F P A Q A F Q A P ˙ F P Q ˙ F Q P ˙ F P ˙ Q ˙ F Q A P ˙ F P ˙ Q ˙ F Q = 0. K
90 49 51 53 66 68 88 89 syl33anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P ˙ Q ˙ F Q A P ˙ F P ˙ Q ˙ F Q = 0. K
91 90 ord K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P ¬ P ˙ F P ˙ Q ˙ F Q A P ˙ F P ˙ Q ˙ F Q = 0. K
92 87 91 mt3d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P P ˙ F P ˙ Q ˙ F Q A
93 1 4 atcmp K AtLat R F A P ˙ F P ˙ Q ˙ F Q A R F ˙ P ˙ F P ˙ Q ˙ F Q R F = P ˙ F P ˙ Q ˙ F Q
94 79 82 92 93 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F ˙ P ˙ F P ˙ Q ˙ F Q R F = P ˙ F P ˙ Q ˙ F Q
95 78 94 mpbid K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q F P P R F = P ˙ F P ˙ Q ˙ F Q
96 43 95 pm2.61dane K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ F P Q ˙ F Q R F = P ˙ F P ˙ Q ˙ F Q