Metamath Proof Explorer


Theorem trlval5

Description: The value of the trace of a lattice translation in terms of itself. (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypotheses trlval3.l ˙ = K
trlval3.j ˙ = join K
trlval3.m ˙ = meet K
trlval3.a A = Atoms K
trlval3.h H = LHyp K
trlval3.t T = LTrn K W
trlval3.r R = trL K W
Assertion trlval5 K HL W H F T P A ¬ P ˙ W R F = P ˙ R F ˙ W

Proof

Step Hyp Ref Expression
1 trlval3.l ˙ = K
2 trlval3.j ˙ = join K
3 trlval3.m ˙ = meet K
4 trlval3.a A = Atoms K
5 trlval3.h H = LHyp K
6 trlval3.t T = LTrn K W
7 trlval3.r R = trL K W
8 1 2 3 4 5 6 7 trlval2 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P ˙ W
9 1 2 4 5 6 7 trljat1 K HL W H F T P A ¬ P ˙ W P ˙ R F = P ˙ F P
10 9 oveq1d K HL W H F T P A ¬ P ˙ W P ˙ R F ˙ W = P ˙ F P ˙ W
11 8 10 eqtr4d K HL W H F T P A ¬ P ˙ W R F = P ˙ R F ˙ W