Metamath Proof Explorer


Theorem trnsetN

Description: The set of translations for a fiducial atom D . (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses trnset.a A = Atoms K
trnset.s S = PSubSp K
trnset.p + ˙ = + 𝑃 K
trnset.o ˙ = 𝑃 K
trnset.w W = WAtoms K
trnset.m M = PAut K
trnset.l L = Dil K
trnset.t T = Trn K
Assertion trnsetN K B D A T D = f L D | q W D r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D

Proof

Step Hyp Ref Expression
1 trnset.a A = Atoms K
2 trnset.s S = PSubSp K
3 trnset.p + ˙ = + 𝑃 K
4 trnset.o ˙ = 𝑃 K
5 trnset.w W = WAtoms K
6 trnset.m M = PAut K
7 trnset.l L = Dil K
8 trnset.t T = Trn K
9 1 2 3 4 5 6 7 8 trnfsetN K B T = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
10 9 fveq1d K B T D = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d D
11 fveq2 d = D L d = L D
12 fveq2 d = D W d = W D
13 sneq d = D d = D
14 13 fveq2d d = D ˙ d = ˙ D
15 14 ineq2d d = D q + ˙ f q ˙ d = q + ˙ f q ˙ D
16 14 ineq2d d = D r + ˙ f r ˙ d = r + ˙ f r ˙ D
17 15 16 eqeq12d d = D q + ˙ f q ˙ d = r + ˙ f r ˙ d q + ˙ f q ˙ D = r + ˙ f r ˙ D
18 12 17 raleqbidv d = D r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D
19 12 18 raleqbidv d = D q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d q W D r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D
20 11 19 rabeqbidv d = D f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d = f L D | q W D r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D
21 eqid d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
22 fvex L D V
23 22 rabex f L D | q W D r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D V
24 20 21 23 fvmpt D A d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d D = f L D | q W D r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D
25 10 24 sylan9eq K B D A T D = f L D | q W D r W D q + ˙ f q ˙ D = r + ˙ f r ˙ D