Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
tron
Next ⟩
ordelon
Metamath Proof Explorer
Ascii
Unicode
Theorem
tron
Description:
The class of all ordinal numbers is transitive.
(Contributed by
NM
, 4-May-2009)
Ref
Expression
Assertion
tron
⊢
Tr
⁡
On
Proof
Step
Hyp
Ref
Expression
1
dftr3
⊢
Tr
⁡
On
↔
∀
x
∈
On
x
⊆
On
2
vex
⊢
x
∈
V
3
2
elon
⊢
x
∈
On
↔
Ord
⁡
x
4
ordelord
⊢
Ord
⁡
x
∧
y
∈
x
→
Ord
⁡
y
5
3
4
sylanb
⊢
x
∈
On
∧
y
∈
x
→
Ord
⁡
y
6
5
ex
⊢
x
∈
On
→
y
∈
x
→
Ord
⁡
y
7
vex
⊢
y
∈
V
8
7
elon
⊢
y
∈
On
↔
Ord
⁡
y
9
6
8
syl6ibr
⊢
x
∈
On
→
y
∈
x
→
y
∈
On
10
9
ssrdv
⊢
x
∈
On
→
x
⊆
On
11
1
10
mprgbir
⊢
Tr
⁡
On