Metamath Proof Explorer


Theorem trrelressn

Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)

Ref Expression
Assertion trrelressn TrRel R A

Proof

Step Hyp Ref Expression
1 trressn x y z x R A y y R A z x R A z
2 relres Rel R A
3 dftrrel3 TrRel R A x y z x R A y y R A z x R A z Rel R A
4 1 2 3 mpbir2an TrRel R A