Metamath Proof Explorer


Theorem trrelssd

Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses trrelssd.r φ R R R
trrelssd.s φ S R
trrelssd.t φ T R
Assertion trrelssd φ S T R

Proof

Step Hyp Ref Expression
1 trrelssd.r φ R R R
2 trrelssd.s φ S R
3 trrelssd.t φ T R
4 2 3 coss12d φ S T R R
5 4 1 sstrd φ S T R