Metamath Proof Explorer


Theorem trressn

Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive, see also trrelressn . (Contributed by Peter Mazsa, 16-Jun-2024)

Ref Expression
Assertion trressn x y z x R A y y R A z x R A z

Proof

Step Hyp Ref Expression
1 an3 x = A A R y y = A A R z x = A A R z
2 eqbrb x = A x R y x = A A R y
3 eqbrb y = A y R z y = A A R z
4 2 3 anbi12i x = A x R y y = A y R z x = A A R y y = A A R z
5 eqbrb x = A x R z x = A A R z
6 1 4 5 3imtr4i x = A x R y y = A y R z x = A x R z
7 brressn x V y V x R A y x = A x R y
8 7 el2v x R A y x = A x R y
9 brressn y V z V y R A z y = A y R z
10 9 el2v y R A z y = A y R z
11 8 10 anbi12i x R A y y R A z x = A x R y y = A y R z
12 brressn x V z V x R A z x = A x R z
13 12 el2v x R A z x = A x R z
14 6 11 13 3imtr4i x R A y y R A z x R A z
15 14 gen2 y z x R A y y R A z x R A z
16 15 ax-gen x y z x R A y y R A z x R A z