Metamath Proof Explorer


Theorem trssord

Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994)

Ref Expression
Assertion trssord Tr A A B Ord B Ord A

Proof

Step Hyp Ref Expression
1 wess A B E We B E We A
2 ordwe Ord B E We B
3 1 2 impel A B Ord B E We A
4 3 anim2i Tr A A B Ord B Tr A E We A
5 4 3impb Tr A A B Ord B Tr A E We A
6 df-ord Ord A Tr A E We A
7 5 6 sylibr Tr A A B Ord B Ord A