Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
trssord
Next ⟩
ordirr
Metamath Proof Explorer
Ascii
Unicode
Theorem
trssord
Description:
A transitive subclass of an ordinal class is ordinal.
(Contributed by
NM
, 29-May-1994)
Ref
Expression
Assertion
trssord
⊢
Tr
⁡
A
∧
A
⊆
B
∧
Ord
⁡
B
→
Ord
⁡
A
Proof
Step
Hyp
Ref
Expression
1
wess
⊢
A
⊆
B
→
E
We
B
→
E
We
A
2
ordwe
⊢
Ord
⁡
B
→
E
We
B
3
1
2
impel
⊢
A
⊆
B
∧
Ord
⁡
B
→
E
We
A
4
3
anim2i
⊢
Tr
⁡
A
∧
A
⊆
B
∧
Ord
⁡
B
→
Tr
⁡
A
∧
E
We
A
5
4
3impb
⊢
Tr
⁡
A
∧
A
⊆
B
∧
Ord
⁡
B
→
Tr
⁡
A
∧
E
We
A
6
df-ord
⊢
Ord
⁡
A
↔
Tr
⁡
A
∧
E
We
A
7
5
6
sylibr
⊢
Tr
⁡
A
∧
A
⊆
B
∧
Ord
⁡
B
→
Ord
⁡
A