Metamath Proof Explorer


Theorem trsuc

Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion trsuc Tr A suc B A B A

Proof

Step Hyp Ref Expression
1 trel Tr A B suc B suc B A B A
2 sssucid B suc B
3 ssexg B suc B suc B A B V
4 2 3 mpan suc B A B V
5 sucidg B V B suc B
6 4 5 syl suc B A B suc B
7 6 ancri suc B A B suc B suc B A
8 1 7 impel Tr A suc B A B A