Metamath Proof Explorer


Theorem tsk0

Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tsk0 T Tarski T T

Proof

Step Hyp Ref Expression
1 n0 T x x T
2 0ss x
3 tskss T Tarski x T x T
4 2 3 mp3an3 T Tarski x T T
5 4 expcom x T T Tarski T
6 5 exlimiv x x T T Tarski T
7 1 6 sylbi T T Tarski T
8 7 impcom T Tarski T T