Metamath Proof Explorer


Theorem tsk2

Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsk2 T Tarski T 2 𝑜 T

Proof

Step Hyp Ref Expression
1 tsk1 T Tarski T 1 𝑜 T
2 df-2o 2 𝑜 = suc 1 𝑜
3 1on 1 𝑜 On
4 tsksuc T Tarski 1 𝑜 On 1 𝑜 T suc 1 𝑜 T
5 3 4 mp3an2 T Tarski 1 𝑜 T suc 1 𝑜 T
6 2 5 eqeltrid T Tarski 1 𝑜 T 2 𝑜 T
7 1 6 syldan T Tarski T 2 𝑜 T