Metamath Proof Explorer


Theorem tsken

Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsken T Tarski A T A T A T

Proof

Step Hyp Ref Expression
1 eltskg T Tarski T Tarski x T 𝒫 x T y T 𝒫 x y x 𝒫 T x T x T
2 1 ibi T Tarski x T 𝒫 x T y T 𝒫 x y x 𝒫 T x T x T
3 2 simprd T Tarski x 𝒫 T x T x T
4 elpw2g T Tarski A 𝒫 T A T
5 4 biimpar T Tarski A T A 𝒫 T
6 breq1 x = A x T A T
7 eleq1 x = A x T A T
8 6 7 orbi12d x = A x T x T A T A T
9 8 rspccva x 𝒫 T x T x T A 𝒫 T A T A T
10 3 5 9 syl2an2r T Tarski A T A T A T