Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Tarski classes
tskinf
Next ⟩
tskpr
Metamath Proof Explorer
Ascii
Unicode
Theorem
tskinf
Description:
A nonempty Tarski class is infinite.
(Contributed by
FL
, 22-Feb-2011)
Ref
Expression
Assertion
tskinf
⊢
T
∈
Tarski
∧
T
≠
∅
→
ω
≼
T
Proof
Step
Hyp
Ref
Expression
1
r111
⊢
R
1
:
On
⟶
1-1
V
2
omsson
⊢
ω
⊆
On
3
omex
⊢
ω
∈
V
4
3
f1imaen
⊢
R
1
:
On
⟶
1-1
V
∧
ω
⊆
On
→
R
1
ω
≈
ω
5
1
2
4
mp2an
⊢
R
1
ω
≈
ω
6
5
ensymi
⊢
ω
≈
R
1
ω
7
simpl
⊢
T
∈
Tarski
∧
T
≠
∅
→
T
∈
Tarski
8
tskr1om
⊢
T
∈
Tarski
∧
T
≠
∅
→
R
1
ω
⊆
T
9
ssdomg
⊢
T
∈
Tarski
→
R
1
ω
⊆
T
→
R
1
ω
≼
T
10
7
8
9
sylc
⊢
T
∈
Tarski
∧
T
≠
∅
→
R
1
ω
≼
T
11
endomtr
⊢
ω
≈
R
1
ω
∧
R
1
ω
≼
T
→
ω
≼
T
12
6
10
11
sylancr
⊢
T
∈
Tarski
∧
T
≠
∅
→
ω
≼
T