Metamath Proof Explorer


Theorem tskinf

Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion tskinf T Tarski T ω T

Proof

Step Hyp Ref Expression
1 r111 R1 : On 1-1 V
2 omsson ω On
3 omex ω V
4 3 f1imaen R1 : On 1-1 V ω On R1 ω ω
5 1 2 4 mp2an R1 ω ω
6 5 ensymi ω R1 ω
7 simpl T Tarski T T Tarski
8 tskr1om T Tarski T R1 ω T
9 ssdomg T Tarski R1 ω T R1 ω T
10 7 8 9 sylc T Tarski T R1 ω T
11 endomtr ω R1 ω R1 ω T ω T
12 6 10 11 sylancr T Tarski T ω T