Metamath Proof Explorer


Theorem tskint

Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskint T Tarski Tr T A T A A T

Proof

Step Hyp Ref Expression
1 simp1l T Tarski Tr T A T A T Tarski
2 tskuni T Tarski Tr T A T A T
3 2 3expa T Tarski Tr T A T A T
4 3 3adant3 T Tarski Tr T A T A A T
5 intssuni A A A
6 5 3ad2ant3 T Tarski Tr T A T A A A
7 tskss T Tarski A T A A A T
8 1 4 6 7 syl3anc T Tarski Tr T A T A A T