Metamath Proof Explorer


Theorem tskop

Description: If A and B are members of a Tarski class, their ordered pair is also an element of the class. JFM CLASSES2 th. 4. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion tskop T Tarski A T B T A B T

Proof

Step Hyp Ref Expression
1 dfopg A T B T A B = A A B
2 1 3adant1 T Tarski A T B T A B = A A B
3 simp1 T Tarski A T B T T Tarski
4 tsksn T Tarski A T A T
5 4 3adant3 T Tarski A T B T A T
6 tskpr T Tarski A T B T A B T
7 tskpr T Tarski A T A B T A A B T
8 3 5 6 7 syl3anc T Tarski A T B T A A B T
9 2 8 eqeltrd T Tarski A T B T A B T