Metamath Proof Explorer


Theorem tsksuc

Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsksuc T Tarski A On A T suc A T

Proof

Step Hyp Ref Expression
1 simp1 T Tarski A On A T T Tarski
2 tskpw T Tarski A T 𝒫 A T
3 2 3adant2 T Tarski A On A T 𝒫 A T
4 eloni A On Ord A
5 4 3ad2ant2 T Tarski A On A T Ord A
6 ordunisuc Ord A suc A = A
7 eqimss suc A = A suc A A
8 5 6 7 3syl T Tarski A On A T suc A A
9 sspwuni suc A 𝒫 A suc A A
10 8 9 sylibr T Tarski A On A T suc A 𝒫 A
11 tskss T Tarski 𝒫 A T suc A 𝒫 A suc A T
12 1 3 10 11 syl3anc T Tarski A On A T suc A T