Metamath Proof Explorer


Theorem tsktrss

Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsktrss T Tarski Tr A A T A T

Proof

Step Hyp Ref Expression
1 simp2 T Tarski Tr A A T Tr A
2 dftr4 Tr A A 𝒫 A
3 1 2 sylib T Tarski Tr A A T A 𝒫 A
4 tskpwss T Tarski A T 𝒫 A T
5 4 3adant2 T Tarski Tr A A T 𝒫 A T
6 3 5 sstrd T Tarski Tr A A T A T