Metamath Proof Explorer


Theorem tskun

Description: The union of two elements of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskun T Tarski Tr T A T B T A B T

Proof

Step Hyp Ref Expression
1 uniprg A T B T A B = A B
2 1 3adant1 T Tarski Tr T A T B T A B = A B
3 simp1l T Tarski Tr T A T B T T Tarski
4 simp1r T Tarski Tr T A T B T Tr T
5 tskpr T Tarski A T B T A B T
6 5 3adant1r T Tarski Tr T A T B T A B T
7 tskuni T Tarski Tr T A B T A B T
8 3 4 6 7 syl3anc T Tarski Tr T A T B T A B T
9 2 8 eqeltrrd T Tarski Tr T A T B T A B T