Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|
2 |
|
rabexg |
|
3 |
|
incom |
|
4 |
|
inex1g |
|
5 |
3 4
|
eqeltrrid |
|
6 |
|
inss1 |
|
7 |
6
|
sseli |
|
8 |
|
onelon |
|
9 |
8
|
ancoms |
|
10 |
7 9
|
sylan2 |
|
11 |
|
onelss |
|
12 |
11
|
impcom |
|
13 |
7 12
|
sylan2 |
|
14 |
|
inss2 |
|
15 |
14
|
sseli |
|
16 |
|
breq1 |
|
17 |
16
|
elrab |
|
18 |
15 17
|
sylib |
|
19 |
18
|
simpld |
|
20 |
19
|
elpwid |
|
21 |
20
|
adantl |
|
22 |
13 21
|
sstrd |
|
23 |
|
velpw |
|
24 |
22 23
|
sylibr |
|
25 |
|
vex |
|
26 |
|
ssdomg |
|
27 |
25 13 26
|
mpsyl |
|
28 |
18
|
simprd |
|
29 |
28
|
adantl |
|
30 |
|
domsdomtr |
|
31 |
27 29 30
|
syl2anc |
|
32 |
|
breq1 |
|
33 |
32
|
elrab |
|
34 |
24 31 33
|
sylanbrc |
|
35 |
10 34
|
elind |
|
36 |
35
|
gen2 |
|
37 |
|
dftr2 |
|
38 |
36 37
|
mpbir |
|
39 |
|
ordon |
|
40 |
|
trssord |
|
41 |
38 6 39 40
|
mp3an |
|
42 |
|
elong |
|
43 |
41 42
|
mpbiri |
|
44 |
1 2 5 43
|
4syl |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
14 46
|
sstrid |
|
48 |
|
ssdomg |
|
49 |
48
|
adantr |
|
50 |
47 49
|
mpd |
|
51 |
|
ordirr |
|
52 |
41 51
|
mp1i |
|
53 |
44
|
3ad2ant1 |
|
54 |
|
elpw2g |
|
55 |
54
|
adantr |
|
56 |
47 55
|
mpbird |
|
57 |
56
|
3adant3 |
|
58 |
|
simp3 |
|
59 |
|
nfcv |
|
60 |
|
nfrab1 |
|
61 |
59 60
|
nfin |
|
62 |
|
nfcv |
|
63 |
|
nfcv |
|
64 |
|
nfcv |
|
65 |
61 63 64
|
nfbr |
|
66 |
|
breq1 |
|
67 |
61 62 65 66
|
elrabf |
|
68 |
57 58 67
|
sylanbrc |
|
69 |
53 68
|
elind |
|
70 |
69
|
3expia |
|
71 |
52 70
|
mtod |
|
72 |
|
bren2 |
|
73 |
50 71 72
|
sylanbrc |
|
74 |
|
isnumi |
|
75 |
45 73 74
|
syl2anc |
|