Metamath Proof Explorer


Theorem tskxp

Description: The Cartesian product of two elements of a transitive Tarski class is an element of the class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskxp T Tarski Tr T A T B T A × B T

Proof

Step Hyp Ref Expression
1 ne0i A T T
2 tskwun T Tarski Tr T T T WUni
3 2 3expa T Tarski Tr T T T WUni
4 1 3 sylan2 T Tarski Tr T A T T WUni
5 4 3adant3 T Tarski Tr T A T B T T WUni
6 simp2 T Tarski Tr T A T B T A T
7 simp3 T Tarski Tr T A T B T B T
8 5 6 7 wunxp T Tarski Tr T A T B T A × B T