Metamath Proof Explorer


Theorem tskxpss

Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskxpss T Tarski A T B T A × B T

Proof

Step Hyp Ref Expression
1 elxp2 z T × T x T y T z = x y
2 tskop T Tarski x T y T x y T
3 eleq1a x y T z = x y z T
4 2 3 syl T Tarski x T y T z = x y z T
5 4 3expib T Tarski x T y T z = x y z T
6 5 rexlimdvv T Tarski x T y T z = x y z T
7 1 6 syl5bi T Tarski z T × T z T
8 7 ssrdv T Tarski T × T T
9 xpss12 A T B T A × B T × T
10 sstr A × B T × T T × T T A × B T
11 10 expcom T × T T A × B T × T A × B T
12 8 9 11 syl2im T Tarski A T B T A × B T
13 12 3impib T Tarski A T B T A × B T