Metamath Proof Explorer


Theorem tsms0

Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsms0.z 0 ˙ = 0 G
tsms0.1 φ G CMnd
tsms0.2 φ G TopSp
tsms0.a φ A V
Assertion tsms0 φ 0 ˙ G tsums x A 0 ˙

Proof

Step Hyp Ref Expression
1 tsms0.z 0 ˙ = 0 G
2 tsms0.1 φ G CMnd
3 tsms0.2 φ G TopSp
4 tsms0.a φ A V
5 cmnmnd G CMnd G Mnd
6 2 5 syl φ G Mnd
7 1 gsumz G Mnd A V G x A 0 ˙ = 0 ˙
8 6 4 7 syl2anc φ G x A 0 ˙ = 0 ˙
9 eqid Base G = Base G
10 9 1 mndidcl G Mnd 0 ˙ Base G
11 6 10 syl φ 0 ˙ Base G
12 11 adantr φ x A 0 ˙ Base G
13 12 fmpttd φ x A 0 ˙ : A Base G
14 fconstmpt A × 0 ˙ = x A 0 ˙
15 1 fvexi 0 ˙ V
16 15 a1i φ 0 ˙ V
17 4 16 fczfsuppd φ finSupp 0 ˙ A × 0 ˙
18 14 17 eqbrtrrid φ finSupp 0 ˙ x A 0 ˙
19 9 1 2 3 4 13 18 tsmsid φ G x A 0 ˙ G tsums x A 0 ˙
20 8 19 eqeltrrd φ 0 ˙ G tsums x A 0 ˙