Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsadd.b |
|
2 |
|
tsmsadd.p |
|
3 |
|
tsmsadd.1 |
|
4 |
|
tsmsadd.2 |
|
5 |
|
tsmsadd.a |
|
6 |
|
tsmsadd.f |
|
7 |
|
tsmsadd.h |
|
8 |
|
tsmsadd.x |
|
9 |
|
tsmsadd.y |
|
10 |
|
tmdtps |
|
11 |
4 10
|
syl |
|
12 |
1 3 11 5 6
|
tsmscl |
|
13 |
12 8
|
sseldd |
|
14 |
1 3 11 5 7
|
tsmscl |
|
15 |
14 9
|
sseldd |
|
16 |
|
eqid |
|
17 |
1 2 16
|
plusfval |
|
18 |
13 15 17
|
syl2anc |
|
19 |
|
eqid |
|
20 |
1 19
|
istps |
|
21 |
11 20
|
sylib |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
22 23 24 5
|
tsmsfbas |
|
26 |
|
fgcl |
|
27 |
25 26
|
syl |
|
28 |
1 22 3 5 6
|
tsmslem1 |
|
29 |
1 22 3 5 7
|
tsmslem1 |
|
30 |
1 19 22 24 3 5 6
|
tsmsval |
|
31 |
8 30
|
eleqtrd |
|
32 |
1 19 22 24 3 5 7
|
tsmsval |
|
33 |
9 32
|
eleqtrd |
|
34 |
19 16
|
tmdcn |
|
35 |
4 34
|
syl |
|
36 |
13 15
|
opelxpd |
|
37 |
|
txtopon |
|
38 |
21 21 37
|
syl2anc |
|
39 |
|
toponuni |
|
40 |
38 39
|
syl |
|
41 |
36 40
|
eleqtrd |
|
42 |
|
eqid |
|
43 |
42
|
cncnpi |
|
44 |
35 41 43
|
syl2anc |
|
45 |
21 21 27 28 29 31 33 44
|
flfcnp2 |
|
46 |
18 45
|
eqeltrrd |
|
47 |
|
cmnmnd |
|
48 |
3 47
|
syl |
|
49 |
1 2
|
mndcl |
|
50 |
49
|
3expb |
|
51 |
48 50
|
sylan |
|
52 |
|
inidm |
|
53 |
51 6 7 5 5 52
|
off |
|
54 |
1 19 22 24 3 5 53
|
tsmsval |
|
55 |
|
eqid |
|
56 |
3
|
adantr |
|
57 |
|
elinel2 |
|
58 |
57
|
adantl |
|
59 |
|
elfpw |
|
60 |
59
|
simplbi |
|
61 |
|
fssres |
|
62 |
6 60 61
|
syl2an |
|
63 |
|
fssres |
|
64 |
7 60 63
|
syl2an |
|
65 |
|
fvexd |
|
66 |
62 58 65
|
fdmfifsupp |
|
67 |
64 58 65
|
fdmfifsupp |
|
68 |
1 55 2 56 58 62 64 66 67
|
gsumadd |
|
69 |
6 5
|
fexd |
|
70 |
7 5
|
fexd |
|
71 |
|
offres |
|
72 |
69 70 71
|
syl2anc |
|
73 |
72
|
adantr |
|
74 |
73
|
oveq2d |
|
75 |
1 2 16
|
plusfval |
|
76 |
28 29 75
|
syl2anc |
|
77 |
68 74 76
|
3eqtr4d |
|
78 |
77
|
mpteq2dva |
|
79 |
78
|
fveq2d |
|
80 |
54 79
|
eqtrd |
|
81 |
46 80
|
eleqtrrd |
|