Metamath Proof Explorer


Theorem tsmscl

Description: A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmscl.b B = Base G
tsmscl.1 φ G CMnd
tsmscl.2 φ G TopSp
tsmscl.a φ A V
tsmscl.f φ F : A B
Assertion tsmscl φ G tsums F B

Proof

Step Hyp Ref Expression
1 tsmscl.b B = Base G
2 tsmscl.1 φ G CMnd
3 tsmscl.2 φ G TopSp
4 tsmscl.a φ A V
5 tsmscl.f φ F : A B
6 eqid TopOpen G = TopOpen G
7 eqid 𝒫 A Fin = 𝒫 A Fin
8 1 6 7 2 3 4 5 eltsms φ x G tsums F x B w TopOpen G x w z 𝒫 A Fin y 𝒫 A Fin z y G F y w
9 simpl x B w TopOpen G x w z 𝒫 A Fin y 𝒫 A Fin z y G F y w x B
10 8 9 syl6bi φ x G tsums F x B
11 10 ssrdv φ G tsums F B