Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsid.b |
|
2 |
|
tsmsid.z |
|
3 |
|
tsmsid.1 |
|
4 |
|
tsmsid.2 |
|
5 |
|
tsmsid.a |
|
6 |
|
tsmsid.f |
|
7 |
|
tsmsid.w |
|
8 |
|
tsmsgsum.j |
|
9 |
1 8
|
istps |
|
10 |
4 9
|
sylib |
|
11 |
|
toponuni |
|
12 |
10 11
|
syl |
|
13 |
12
|
eleq2d |
|
14 |
|
elfpw |
|
15 |
14
|
simplbi |
|
16 |
15
|
adantl |
|
17 |
|
suppssdm |
|
18 |
17 6
|
fssdm |
|
19 |
18
|
ad2antrr |
|
20 |
16 19
|
unssd |
|
21 |
|
elinel2 |
|
22 |
21
|
adantl |
|
23 |
7
|
ad2antrr |
|
24 |
23
|
fsuppimpd |
|
25 |
|
unfi |
|
26 |
22 24 25
|
syl2anc |
|
27 |
|
elfpw |
|
28 |
20 26 27
|
sylanbrc |
|
29 |
|
ssun1 |
|
30 |
|
id |
|
31 |
29 30
|
sseqtrrid |
|
32 |
|
pm5.5 |
|
33 |
31 32
|
syl |
|
34 |
|
reseq2 |
|
35 |
34
|
oveq2d |
|
36 |
35
|
eleq1d |
|
37 |
33 36
|
bitrd |
|
38 |
37
|
rspcv |
|
39 |
28 38
|
syl |
|
40 |
3
|
ad2antrr |
|
41 |
5
|
ad2antrr |
|
42 |
6
|
ad2antrr |
|
43 |
|
ssun2 |
|
44 |
43
|
a1i |
|
45 |
1 2 40 41 42 44 23
|
gsumres |
|
46 |
45
|
eleq1d |
|
47 |
39 46
|
sylibd |
|
48 |
47
|
rexlimdva |
|
49 |
7
|
fsuppimpd |
|
50 |
|
elfpw |
|
51 |
18 49 50
|
sylanbrc |
|
52 |
3
|
ad2antrr |
|
53 |
5
|
ad2antrr |
|
54 |
6
|
ad2antrr |
|
55 |
|
simprr |
|
56 |
7
|
ad2antrr |
|
57 |
1 2 52 53 54 55 56
|
gsumres |
|
58 |
|
simplrr |
|
59 |
57 58
|
eqeltrd |
|
60 |
59
|
expr |
|
61 |
60
|
ralrimiva |
|
62 |
|
sseq1 |
|
63 |
62
|
rspceaimv |
|
64 |
51 61 63
|
syl2an2r |
|
65 |
64
|
expr |
|
66 |
48 65
|
impbid |
|
67 |
|
disjsn |
|
68 |
67
|
necon2abii |
|
69 |
66 68
|
bitrdi |
|
70 |
69
|
imbi2d |
|
71 |
70
|
ralbidva |
|
72 |
13 71
|
anbi12d |
|
73 |
|
eqid |
|
74 |
1 8 73 3 4 5 6
|
eltsms |
|
75 |
|
topontop |
|
76 |
10 75
|
syl |
|
77 |
1 2 3 5 6 7
|
gsumcl |
|
78 |
77
|
snssd |
|
79 |
78 12
|
sseqtrd |
|
80 |
|
eqid |
|
81 |
80
|
elcls2 |
|
82 |
76 79 81
|
syl2anc |
|
83 |
72 74 82
|
3bitr4d |
|
84 |
83
|
eqrdv |
|