Metamath Proof Explorer


Theorem tsmsid

Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015) (Revised by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmsid.b B = Base G
tsmsid.z 0 ˙ = 0 G
tsmsid.1 φ G CMnd
tsmsid.2 φ G TopSp
tsmsid.a φ A V
tsmsid.f φ F : A B
tsmsid.w φ finSupp 0 ˙ F
Assertion tsmsid φ G F G tsums F

Proof

Step Hyp Ref Expression
1 tsmsid.b B = Base G
2 tsmsid.z 0 ˙ = 0 G
3 tsmsid.1 φ G CMnd
4 tsmsid.2 φ G TopSp
5 tsmsid.a φ A V
6 tsmsid.f φ F : A B
7 tsmsid.w φ finSupp 0 ˙ F
8 eqid TopOpen G = TopOpen G
9 1 8 istps G TopSp TopOpen G TopOn B
10 4 9 sylib φ TopOpen G TopOn B
11 topontop TopOpen G TopOn B TopOpen G Top
12 10 11 syl φ TopOpen G Top
13 1 2 3 5 6 7 gsumcl φ G F B
14 13 snssd φ G F B
15 toponuni TopOpen G TopOn B B = TopOpen G
16 10 15 syl φ B = TopOpen G
17 14 16 sseqtrd φ G F TopOpen G
18 eqid TopOpen G = TopOpen G
19 18 sscls TopOpen G Top G F TopOpen G G F cls TopOpen G G F
20 12 17 19 syl2anc φ G F cls TopOpen G G F
21 ovex G F V
22 21 snss G F cls TopOpen G G F G F cls TopOpen G G F
23 20 22 sylibr φ G F cls TopOpen G G F
24 1 2 3 4 5 6 7 8 tsmsgsum φ G tsums F = cls TopOpen G G F
25 23 24 eleqtrrd φ G F G tsums F