Metamath Proof Explorer


Theorem tsmsinv

Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses tsmsinv.b B = Base G
tsmsinv.p I = inv g G
tsmsinv.1 φ G CMnd
tsmsinv.2 φ G TopGrp
tsmsinv.a φ A V
tsmsinv.f φ F : A B
tsmsinv.x φ X G tsums F
Assertion tsmsinv φ I X G tsums I F

Proof

Step Hyp Ref Expression
1 tsmsinv.b B = Base G
2 tsmsinv.p I = inv g G
3 tsmsinv.1 φ G CMnd
4 tsmsinv.2 φ G TopGrp
5 tsmsinv.a φ A V
6 tsmsinv.f φ F : A B
7 tsmsinv.x φ X G tsums F
8 eqid TopOpen G = TopOpen G
9 tgptps G TopGrp G TopSp
10 4 9 syl φ G TopSp
11 tgpgrp G TopGrp G Grp
12 4 11 syl φ G Grp
13 isabl G Abel G Grp G CMnd
14 12 3 13 sylanbrc φ G Abel
15 1 2 invghm G Abel I G GrpHom G
16 14 15 sylib φ I G GrpHom G
17 ghmmhm I G GrpHom G I G MndHom G
18 16 17 syl φ I G MndHom G
19 8 2 tgpinv G TopGrp I TopOpen G Cn TopOpen G
20 4 19 syl φ I TopOpen G Cn TopOpen G
21 1 8 8 3 10 3 10 18 20 5 6 7 tsmsmhm φ I X G tsums I F