Metamath Proof Explorer


Theorem tsmslem1

Description: The finite partial sums of a function F are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmslem1.b B = Base G
tsmslem1.s S = 𝒫 A Fin
tsmslem1.1 φ G CMnd
tsmslem1.a φ A W
tsmslem1.f φ F : A B
Assertion tsmslem1 φ X S G F X B

Proof

Step Hyp Ref Expression
1 tsmslem1.b B = Base G
2 tsmslem1.s S = 𝒫 A Fin
3 tsmslem1.1 φ G CMnd
4 tsmslem1.a φ A W
5 tsmslem1.f φ F : A B
6 eqid 0 G = 0 G
7 3 adantr φ X S G CMnd
8 simpr φ X S X S
9 5 adantr φ X S F : A B
10 8 2 eleqtrdi φ X S X 𝒫 A Fin
11 elfpw X 𝒫 A Fin X A X Fin
12 11 simplbi X 𝒫 A Fin X A
13 10 12 syl φ X S X A
14 9 13 fssresd φ X S F X : X B
15 10 elin2d φ X S X Fin
16 fvexd φ X S 0 G V
17 14 15 16 fdmfifsupp φ X S finSupp 0 G F X
18 1 6 7 8 14 17 gsumcl φ X S G F X B