Metamath Proof Explorer


Theorem tsmspropd

Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmspropd.f φ F V
tsmspropd.g φ G W
tsmspropd.h φ H X
tsmspropd.b φ Base G = Base H
tsmspropd.p φ + G = + H
tsmspropd.j φ TopOpen G = TopOpen H
Assertion tsmspropd φ G tsums F = H tsums F

Proof

Step Hyp Ref Expression
1 tsmspropd.f φ F V
2 tsmspropd.g φ G W
3 tsmspropd.h φ H X
4 tsmspropd.b φ Base G = Base H
5 tsmspropd.p φ + G = + H
6 tsmspropd.j φ TopOpen G = TopOpen H
7 6 oveq1d φ TopOpen G fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y = TopOpen H fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y
8 1 resexd φ F y V
9 8 2 3 4 5 gsumpropd φ G F y = H F y
10 9 mpteq2dv φ y 𝒫 dom F Fin G F y = y 𝒫 dom F Fin H F y
11 7 10 fveq12d φ TopOpen G fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin G F y = TopOpen H fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin H F y
12 eqid Base G = Base G
13 eqid TopOpen G = TopOpen G
14 eqid 𝒫 dom F Fin = 𝒫 dom F Fin
15 eqid ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y = ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y
16 eqidd φ dom F = dom F
17 12 13 14 15 2 1 16 tsmsval2 φ G tsums F = TopOpen G fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin G F y
18 eqid Base H = Base H
19 eqid TopOpen H = TopOpen H
20 18 19 14 15 3 1 16 tsmsval2 φ H tsums F = TopOpen H fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin H F y
21 11 17 20 3eqtr4d φ G tsums F = H tsums F