Metamath Proof Explorer


Theorem tsmssplit

Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmssplit.b B = Base G
tsmssplit.p + ˙ = + G
tsmssplit.1 φ G CMnd
tsmssplit.2 φ G TopMnd
tsmssplit.a φ A V
tsmssplit.f φ F : A B
tsmssplit.x φ X G tsums F C
tsmssplit.y φ Y G tsums F D
tsmssplit.i φ C D =
tsmssplit.u φ A = C D
Assertion tsmssplit φ X + ˙ Y G tsums F

Proof

Step Hyp Ref Expression
1 tsmssplit.b B = Base G
2 tsmssplit.p + ˙ = + G
3 tsmssplit.1 φ G CMnd
4 tsmssplit.2 φ G TopMnd
5 tsmssplit.a φ A V
6 tsmssplit.f φ F : A B
7 tsmssplit.x φ X G tsums F C
8 tsmssplit.y φ Y G tsums F D
9 tsmssplit.i φ C D =
10 tsmssplit.u φ A = C D
11 6 ffvelrnda φ k A F k B
12 cmnmnd G CMnd G Mnd
13 3 12 syl φ G Mnd
14 eqid 0 G = 0 G
15 1 14 mndidcl G Mnd 0 G B
16 13 15 syl φ 0 G B
17 16 adantr φ k A 0 G B
18 11 17 ifcld φ k A if k C F k 0 G B
19 18 fmpttd φ k A if k C F k 0 G : A B
20 11 17 ifcld φ k A if k D F k 0 G B
21 20 fmpttd φ k A if k D F k 0 G : A B
22 6 feqmptd φ F = k A F k
23 22 reseq1d φ F C = k A F k C
24 ssun1 C C D
25 24 10 sseqtrrid φ C A
26 iftrue k C if k C F k 0 G = F k
27 26 mpteq2ia k C if k C F k 0 G = k C F k
28 resmpt C A k A if k C F k 0 G C = k C if k C F k 0 G
29 resmpt C A k A F k C = k C F k
30 27 28 29 3eqtr4a C A k A if k C F k 0 G C = k A F k C
31 25 30 syl φ k A if k C F k 0 G C = k A F k C
32 23 31 eqtr4d φ F C = k A if k C F k 0 G C
33 32 oveq2d φ G tsums F C = G tsums k A if k C F k 0 G C
34 tmdtps G TopMnd G TopSp
35 4 34 syl φ G TopSp
36 eldifn k A C ¬ k C
37 36 adantl φ k A C ¬ k C
38 37 iffalsed φ k A C if k C F k 0 G = 0 G
39 38 5 suppss2 φ k A if k C F k 0 G supp 0 G C
40 1 14 3 35 5 19 39 tsmsres φ G tsums k A if k C F k 0 G C = G tsums k A if k C F k 0 G
41 33 40 eqtrd φ G tsums F C = G tsums k A if k C F k 0 G
42 7 41 eleqtrd φ X G tsums k A if k C F k 0 G
43 22 reseq1d φ F D = k A F k D
44 ssun2 D C D
45 44 10 sseqtrrid φ D A
46 iftrue k D if k D F k 0 G = F k
47 46 mpteq2ia k D if k D F k 0 G = k D F k
48 resmpt D A k A if k D F k 0 G D = k D if k D F k 0 G
49 resmpt D A k A F k D = k D F k
50 47 48 49 3eqtr4a D A k A if k D F k 0 G D = k A F k D
51 45 50 syl φ k A if k D F k 0 G D = k A F k D
52 43 51 eqtr4d φ F D = k A if k D F k 0 G D
53 52 oveq2d φ G tsums F D = G tsums k A if k D F k 0 G D
54 eldifn k A D ¬ k D
55 54 adantl φ k A D ¬ k D
56 55 iffalsed φ k A D if k D F k 0 G = 0 G
57 56 5 suppss2 φ k A if k D F k 0 G supp 0 G D
58 1 14 3 35 5 21 57 tsmsres φ G tsums k A if k D F k 0 G D = G tsums k A if k D F k 0 G
59 53 58 eqtrd φ G tsums F D = G tsums k A if k D F k 0 G
60 8 59 eleqtrd φ Y G tsums k A if k D F k 0 G
61 1 2 3 4 5 19 21 42 60 tsmsadd φ X + ˙ Y G tsums k A if k C F k 0 G + ˙ f k A if k D F k 0 G
62 26 adantl φ k A k C if k C F k 0 G = F k
63 noel ¬ k
64 eleq2 C D = k C D k
65 63 64 mtbiri C D = ¬ k C D
66 9 65 syl φ ¬ k C D
67 66 adantr φ k A ¬ k C D
68 elin k C D k C k D
69 67 68 sylnib φ k A ¬ k C k D
70 imnan k C ¬ k D ¬ k C k D
71 69 70 sylibr φ k A k C ¬ k D
72 71 imp φ k A k C ¬ k D
73 72 iffalsed φ k A k C if k D F k 0 G = 0 G
74 62 73 oveq12d φ k A k C if k C F k 0 G + ˙ if k D F k 0 G = F k + ˙ 0 G
75 1 2 14 mndrid G Mnd F k B F k + ˙ 0 G = F k
76 13 11 75 syl2an2r φ k A F k + ˙ 0 G = F k
77 76 adantr φ k A k C F k + ˙ 0 G = F k
78 74 77 eqtrd φ k A k C if k C F k 0 G + ˙ if k D F k 0 G = F k
79 71 con2d φ k A k D ¬ k C
80 79 imp φ k A k D ¬ k C
81 80 iffalsed φ k A k D if k C F k 0 G = 0 G
82 46 adantl φ k A k D if k D F k 0 G = F k
83 81 82 oveq12d φ k A k D if k C F k 0 G + ˙ if k D F k 0 G = 0 G + ˙ F k
84 1 2 14 mndlid G Mnd F k B 0 G + ˙ F k = F k
85 13 11 84 syl2an2r φ k A 0 G + ˙ F k = F k
86 85 adantr φ k A k D 0 G + ˙ F k = F k
87 83 86 eqtrd φ k A k D if k C F k 0 G + ˙ if k D F k 0 G = F k
88 10 eleq2d φ k A k C D
89 elun k C D k C k D
90 88 89 bitrdi φ k A k C k D
91 90 biimpa φ k A k C k D
92 78 87 91 mpjaodan φ k A if k C F k 0 G + ˙ if k D F k 0 G = F k
93 92 mpteq2dva φ k A if k C F k 0 G + ˙ if k D F k 0 G = k A F k
94 22 93 eqtr4d φ F = k A if k C F k 0 G + ˙ if k D F k 0 G
95 eqidd φ k A if k C F k 0 G = k A if k C F k 0 G
96 eqidd φ k A if k D F k 0 G = k A if k D F k 0 G
97 5 18 20 95 96 offval2 φ k A if k C F k 0 G + ˙ f k A if k D F k 0 G = k A if k C F k 0 G + ˙ if k D F k 0 G
98 94 97 eqtr4d φ F = k A if k C F k 0 G + ˙ f k A if k D F k 0 G
99 98 oveq2d φ G tsums F = G tsums k A if k C F k 0 G + ˙ f k A if k D F k 0 G
100 61 99 eleqtrrd φ X + ˙ Y G tsums F