Metamath Proof Explorer


Theorem tsmsval

Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmsval.b B = Base G
tsmsval.j J = TopOpen G
tsmsval.s S = 𝒫 A Fin
tsmsval.l L = ran z S y S | z y
tsmsval.g φ G V
tsmsval.a φ A W
tsmsval.f φ F : A B
Assertion tsmsval φ G tsums F = J fLimf S filGen L y S G F y

Proof

Step Hyp Ref Expression
1 tsmsval.b B = Base G
2 tsmsval.j J = TopOpen G
3 tsmsval.s S = 𝒫 A Fin
4 tsmsval.l L = ran z S y S | z y
5 tsmsval.g φ G V
6 tsmsval.a φ A W
7 tsmsval.f φ F : A B
8 1 fvexi B V
9 8 a1i φ B V
10 fex2 F : A B A W B V F V
11 7 6 9 10 syl3anc φ F V
12 7 fdmd φ dom F = A
13 1 2 3 4 5 11 12 tsmsval2 φ G tsums F = J fLimf S filGen L y S G F y