Description: Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | istsr.1 | |
|
Assertion | tsrlemax | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istsr.1 | |
|
2 | breq2 | |
|
3 | 2 | bibi1d | |
4 | breq2 | |
|
5 | 4 | bibi1d | |
6 | olc | |
|
7 | eqid | |
|
8 | 7 | istsr | |
9 | 8 | simplbi | |
10 | pstr | |
|
11 | 10 | 3expib | |
12 | 9 11 | syl | |
13 | 12 | adantr | |
14 | 13 | expdimp | |
15 | 14 | impancom | |
16 | idd | |
|
17 | 15 16 | jaod | |
18 | 6 17 | impbid2 | |
19 | orc | |
|
20 | idd | |
|
21 | 1 | tsrlin | |
22 | 21 | 3adant3r1 | |
23 | 22 | orcanai | |
24 | pstr | |
|
25 | 24 | 3expib | |
26 | 9 25 | syl | |
27 | 26 | adantr | |
28 | 27 | expdimp | |
29 | 28 | impancom | |
30 | 23 29 | syldan | |
31 | 20 30 | jaod | |
32 | 19 31 | impbid2 | |
33 | 3 5 18 32 | ifbothda | |