Metamath Proof Explorer


Theorem tsrlemax

Description: Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis istsr.1 X=domR
Assertion tsrlemax RTosetRelAXBXCXARifBRCCBARBARC

Proof

Step Hyp Ref Expression
1 istsr.1 X=domR
2 breq2 C=ifBRCCBARCARifBRCCB
3 2 bibi1d C=ifBRCCBARCARBARCARifBRCCBARBARC
4 breq2 B=ifBRCCBARBARifBRCCB
5 4 bibi1d B=ifBRCCBARBARBARCARifBRCCBARBARC
6 olc ARCARBARC
7 eqid domR=domR
8 7 istsr RTosetRelRPosetReldomR×domRRR-1
9 8 simplbi RTosetRelRPosetRel
10 pstr RPosetRelARBBRCARC
11 10 3expib RPosetRelARBBRCARC
12 9 11 syl RTosetRelARBBRCARC
13 12 adantr RTosetRelAXBXCXARBBRCARC
14 13 expdimp RTosetRelAXBXCXARBBRCARC
15 14 impancom RTosetRelAXBXCXBRCARBARC
16 idd RTosetRelAXBXCXBRCARCARC
17 15 16 jaod RTosetRelAXBXCXBRCARBARCARC
18 6 17 impbid2 RTosetRelAXBXCXBRCARCARBARC
19 orc ARBARBARC
20 idd RTosetRelAXBXCX¬BRCARBARB
21 1 tsrlin RTosetRelBXCXBRCCRB
22 21 3adant3r1 RTosetRelAXBXCXBRCCRB
23 22 orcanai RTosetRelAXBXCX¬BRCCRB
24 pstr RPosetRelARCCRBARB
25 24 3expib RPosetRelARCCRBARB
26 9 25 syl RTosetRelARCCRBARB
27 26 adantr RTosetRelAXBXCXARCCRBARB
28 27 expdimp RTosetRelAXBXCXARCCRBARB
29 28 impancom RTosetRelAXBXCXCRBARCARB
30 23 29 syldan RTosetRelAXBXCX¬BRCARCARB
31 20 30 jaod RTosetRelAXBXCX¬BRCARBARCARB
32 19 31 impbid2 RTosetRelAXBXCX¬BRCARBARBARC
33 3 5 18 32 ifbothda RTosetRelAXBXCXARifBRCCBARBARC