Database
BASIC ORDER THEORY
Posets, directed sets, and lattices as relations
Posets and lattices as relations
tsrlin
Next ⟩
tsrlemax
Metamath Proof Explorer
Ascii
Unicode
Theorem
tsrlin
Description:
A toset is a linear order.
(Contributed by
Mario Carneiro
, 9-Sep-2015)
Ref
Expression
Hypothesis
istsr.1
⊢
X
=
dom
⁡
R
Assertion
tsrlin
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
→
A
R
B
∨
B
R
A
Proof
Step
Hyp
Ref
Expression
1
istsr.1
⊢
X
=
dom
⁡
R
2
1
istsr2
⊢
R
∈
TosetRel
↔
R
∈
PosetRel
∧
∀
x
∈
X
∀
y
∈
X
x
R
y
∨
y
R
x
3
2
simprbi
⊢
R
∈
TosetRel
→
∀
x
∈
X
∀
y
∈
X
x
R
y
∨
y
R
x
4
breq1
⊢
x
=
A
→
x
R
y
↔
A
R
y
5
breq2
⊢
x
=
A
→
y
R
x
↔
y
R
A
6
4
5
orbi12d
⊢
x
=
A
→
x
R
y
∨
y
R
x
↔
A
R
y
∨
y
R
A
7
breq2
⊢
y
=
B
→
A
R
y
↔
A
R
B
8
breq1
⊢
y
=
B
→
y
R
A
↔
B
R
A
9
7
8
orbi12d
⊢
y
=
B
→
A
R
y
∨
y
R
A
↔
A
R
B
∨
B
R
A
10
6
9
rspc2v
⊢
A
∈
X
∧
B
∈
X
→
∀
x
∈
X
∀
y
∈
X
x
R
y
∨
y
R
x
→
A
R
B
∨
B
R
A
11
3
10
syl5com
⊢
R
∈
TosetRel
→
A
∈
X
∧
B
∈
X
→
A
R
B
∨
B
R
A
12
11
3impib
⊢
R
∈
TosetRel
∧
A
∈
X
∧
B
∈
X
→
A
R
B
∨
B
R
A