Metamath Proof Explorer


Theorem tsrps

Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion tsrps R TosetRel R PosetRel

Proof

Step Hyp Ref Expression
1 eqid dom R = dom R
2 1 istsr R TosetRel R PosetRel dom R × dom R R R -1
3 2 simplbi R TosetRel R PosetRel