| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttgval.n |
|
| 2 |
|
ttgitvval.i |
|
| 3 |
|
ttgitvval.b |
|
| 4 |
|
ttgitvval.m |
|
| 5 |
|
ttgitvval.s |
|
| 6 |
|
ttgelitv.x |
|
| 7 |
|
ttgelitv.y |
|
| 8 |
|
ttgbtwnid.r |
|
| 9 |
|
ttgbtwnid.2 |
|
| 10 |
|
ttgbtwnid.1 |
|
| 11 |
|
ttgbtwnid.y |
|
| 12 |
|
simpll |
|
| 13 |
|
simpr |
|
| 14 |
|
clmlmod |
|
| 15 |
10 14
|
syl |
|
| 16 |
|
eqid |
|
| 17 |
3 16 4
|
lmodsubid |
|
| 18 |
15 6 17
|
syl2anc |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
19
|
oveq2d |
|
| 21 |
15
|
ad2antrr |
|
| 22 |
9
|
ad2antrr |
|
| 23 |
|
simplr |
|
| 24 |
22 23
|
sseldd |
|
| 25 |
|
eqid |
|
| 26 |
25 5 8 16
|
lmodvs0 |
|
| 27 |
21 24 26
|
syl2anc |
|
| 28 |
13 20 27
|
3eqtrd |
|
| 29 |
3 16 4
|
lmodsubeq0 |
|
| 30 |
15 7 6 29
|
syl3anc |
|
| 31 |
30
|
biimpa |
|
| 32 |
12 28 31
|
syl2anc |
|
| 33 |
32
|
eqcomd |
|
| 34 |
1 2 3 4 5 6 6 10 7
|
ttgelitv |
|
| 35 |
11 34
|
mpbid |
|
| 36 |
33 35
|
r19.29a |
|