Metamath Proof Explorer


Theorem ttrcleq

Description: Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion ttrcleq Could not format assertion : No typesetting found for |- ( R = S -> t++ R = t++ S ) with typecode |-

Proof

Step Hyp Ref Expression
1 breq R=SfmRfsucmfmSfsucm
2 1 ralbidv R=SmnfmRfsucmmnfmSfsucm
3 2 3anbi3d R=SfFnsucnf=xfn=ymnfmRfsucmfFnsucnf=xfn=ymnfmSfsucm
4 3 exbidv R=SffFnsucnf=xfn=ymnfmRfsucmffFnsucnf=xfn=ymnfmSfsucm
5 4 rexbidv R=Snω1𝑜ffFnsucnf=xfn=ymnfmRfsucmnω1𝑜ffFnsucnf=xfn=ymnfmSfsucm
6 5 opabbidv R=Sxy|nω1𝑜ffFnsucnf=xfn=ymnfmRfsucm=xy|nω1𝑜ffFnsucnf=xfn=ymnfmSfsucm
7 df-ttrcl Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode |-
8 df-ttrcl Could not format t++ S = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } : No typesetting found for |- t++ S = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } with typecode |-
9 6 7 8 3eqtr4g Could not format ( R = S -> t++ R = t++ S ) : No typesetting found for |- ( R = S -> t++ R = t++ S ) with typecode |-