Metamath Proof Explorer


Theorem ttrclexg

Description: If R is a set, then so is t++ R . (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Assertion ttrclexg R V t++ R V

Proof

Step Hyp Ref Expression
1 dmexg R V dom R V
2 rnexg R V ran R V
3 1 2 xpexd R V dom R × ran R V
4 relttrcl Rel t++ R
5 relssdmrn Rel t++ R t++ R dom t++ R × ran t++ R
6 4 5 ax-mp t++ R dom t++ R × ran t++ R
7 dmttrcl dom t++ R = dom R
8 rnttrcl ran t++ R = ran R
9 7 8 xpeq12i dom t++ R × ran t++ R = dom R × ran R
10 6 9 sseqtri t++ R dom R × ran R
11 10 a1i R V t++ R dom R × ran R
12 3 11 ssexd R V t++ R V