Metamath Proof Explorer


Theorem ttrclse

Description: If R is set-like over A , then the transitive closure of the restriction of R to A is set-like over A .

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Assertion ttrclse R Se A t++ R A Se A

Proof

Step Hyp Ref Expression
1 brttrcl2 y t++ R A x n ω f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a
2 eqid rec b V w b Pred R A w Pred R A x = rec b V w b Pred R A w Pred R A x
3 2 ttrclselem2 n ω R Se A x A f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a y rec b V w b Pred R A w Pred R A x n
4 3 3expb n ω R Se A x A f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a y rec b V w b Pred R A w Pred R A x n
5 4 ancoms R Se A x A n ω f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a y rec b V w b Pred R A w Pred R A x n
6 5 rexbidva R Se A x A n ω f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a n ω y rec b V w b Pred R A w Pred R A x n
7 1 6 bitrid R Se A x A y t++ R A x n ω y rec b V w b Pred R A w Pred R A x n
8 vex y V
9 8 elpred x V y Pred t++ R A A x y A y t++ R A x
10 9 elv y Pred t++ R A A x y A y t++ R A x
11 resdmss dom R A A
12 vex x V
13 8 12 breldm y t++ R A x y dom t++ R A
14 dmttrcl dom t++ R A = dom R A
15 13 14 eleqtrdi y t++ R A x y dom R A
16 11 15 sselid y t++ R A x y A
17 16 pm4.71ri y t++ R A x y A y t++ R A x
18 10 17 bitr4i y Pred t++ R A A x y t++ R A x
19 rdgfun Fun rec b V w b Pred R A w Pred R A x
20 eluniima Fun rec b V w b Pred R A w Pred R A x y rec b V w b Pred R A w Pred R A x ω n ω y rec b V w b Pred R A w Pred R A x n
21 19 20 ax-mp y rec b V w b Pred R A w Pred R A x ω n ω y rec b V w b Pred R A w Pred R A x n
22 7 18 21 3bitr4g R Se A x A y Pred t++ R A A x y rec b V w b Pred R A w Pred R A x ω
23 22 eqrdv R Se A x A Pred t++ R A A x = rec b V w b Pred R A w Pred R A x ω
24 omex ω V
25 24 funimaex Fun rec b V w b Pred R A w Pred R A x rec b V w b Pred R A w Pred R A x ω V
26 19 25 ax-mp rec b V w b Pred R A w Pred R A x ω V
27 26 uniex rec b V w b Pred R A w Pred R A x ω V
28 23 27 eqeltrdi R Se A x A Pred t++ R A A x V
29 28 ralrimiva R Se A x A Pred t++ R A A x V
30 dfse3 t++ R A Se A x A Pred t++ R A A x V
31 29 30 sylibr R Se A t++ R A Se A