Metamath Proof Explorer


Theorem ttukey2g

Description: The Teichmüller-Tukey Lemma ttukey with a slightly stronger conclusion: we can set up the maximal element of A so that it also contains some given B e. A as a subset. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion ttukey2g A dom card B A x x A 𝒫 x Fin A x A B x y A ¬ x y

Proof

Step Hyp Ref Expression
1 difss A B A
2 ssnum A dom card A B A A B dom card
3 1 2 mpan2 A dom card A B dom card
4 isnum3 A B dom card card A B A B
5 bren card A B A B f f : card A B 1-1 onto A B
6 4 5 bitri A B dom card f f : card A B 1-1 onto A B
7 simp1 f : card A B 1-1 onto A B B A x x A 𝒫 x Fin A f : card A B 1-1 onto A B
8 simp2 f : card A B 1-1 onto A B B A x x A 𝒫 x Fin A B A
9 simp3 f : card A B 1-1 onto A B B A x x A 𝒫 x Fin A x x A 𝒫 x Fin A
10 dmeq w = z dom w = dom z
11 10 unieqd w = z dom w = dom z
12 10 11 eqeq12d w = z dom w = dom w dom z = dom z
13 10 eqeq1d w = z dom w = dom z =
14 rneq w = z ran w = ran z
15 14 unieqd w = z ran w = ran z
16 13 15 ifbieq2d w = z if dom w = B ran w = if dom z = B ran z
17 id w = z w = z
18 17 11 fveq12d w = z w dom w = z dom z
19 11 fveq2d w = z f dom w = f dom z
20 19 sneqd w = z f dom w = f dom z
21 18 20 uneq12d w = z w dom w f dom w = z dom z f dom z
22 21 eleq1d w = z w dom w f dom w A z dom z f dom z A
23 22 20 ifbieq1d w = z if w dom w f dom w A f dom w = if z dom z f dom z A f dom z
24 18 23 uneq12d w = z w dom w if w dom w f dom w A f dom w = z dom z if z dom z f dom z A f dom z
25 12 16 24 ifbieq12d w = z if dom w = dom w if dom w = B ran w w dom w if w dom w f dom w A f dom w = if dom z = dom z if dom z = B ran z z dom z if z dom z f dom z A f dom z
26 25 cbvmptv w V if dom w = dom w if dom w = B ran w w dom w if w dom w f dom w A f dom w = z V if dom z = dom z if dom z = B ran z z dom z if z dom z f dom z A f dom z
27 recseq w V if dom w = dom w if dom w = B ran w w dom w if w dom w f dom w A f dom w = z V if dom z = dom z if dom z = B ran z z dom z if z dom z f dom z A f dom z recs w V if dom w = dom w if dom w = B ran w w dom w if w dom w f dom w A f dom w = recs z V if dom z = dom z if dom z = B ran z z dom z if z dom z f dom z A f dom z
28 26 27 ax-mp recs w V if dom w = dom w if dom w = B ran w w dom w if w dom w f dom w A f dom w = recs z V if dom z = dom z if dom z = B ran z z dom z if z dom z f dom z A f dom z
29 7 8 9 28 ttukeylem7 f : card A B 1-1 onto A B B A x x A 𝒫 x Fin A x A B x y A ¬ x y
30 29 3expib f : card A B 1-1 onto A B B A x x A 𝒫 x Fin A x A B x y A ¬ x y
31 30 exlimiv f f : card A B 1-1 onto A B B A x x A 𝒫 x Fin A x A B x y A ¬ x y
32 6 31 sylbi A B dom card B A x x A 𝒫 x Fin A x A B x y A ¬ x y
33 3 32 syl A dom card B A x x A 𝒫 x Fin A x A B x y A ¬ x y
34 33 3impib A dom card B A x x A 𝒫 x Fin A x A B x y A ¬ x y