Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
|
2 |
|
ssnum |
|
3 |
1 2
|
mpan2 |
|
4 |
|
isnum3 |
|
5 |
|
bren |
|
6 |
4 5
|
bitri |
|
7 |
|
simp1 |
|
8 |
|
simp2 |
|
9 |
|
simp3 |
|
10 |
|
dmeq |
|
11 |
10
|
unieqd |
|
12 |
10 11
|
eqeq12d |
|
13 |
10
|
eqeq1d |
|
14 |
|
rneq |
|
15 |
14
|
unieqd |
|
16 |
13 15
|
ifbieq2d |
|
17 |
|
id |
|
18 |
17 11
|
fveq12d |
|
19 |
11
|
fveq2d |
|
20 |
19
|
sneqd |
|
21 |
18 20
|
uneq12d |
|
22 |
21
|
eleq1d |
|
23 |
22 20
|
ifbieq1d |
|
24 |
18 23
|
uneq12d |
|
25 |
12 16 24
|
ifbieq12d |
|
26 |
25
|
cbvmptv |
|
27 |
|
recseq |
|
28 |
26 27
|
ax-mp |
|
29 |
7 8 9 28
|
ttukeylem7 |
|
30 |
29
|
3expib |
|
31 |
30
|
exlimiv |
|
32 |
6 31
|
sylbi |
|
33 |
3 32
|
syl |
|
34 |
33
|
3impib |
|