Metamath Proof Explorer


Theorem ttukeyg

Description: The Teichmüller-Tukey Lemma ttukey stated with the "choice" as an antecedent (the hypothesis U. A e. dom card says that U. A is well-orderable). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion ttukeyg A dom card A x x A 𝒫 x Fin A x A y A ¬ x y

Proof

Step Hyp Ref Expression
1 n0 A z z A
2 ttukey2g A dom card z A x x A 𝒫 x Fin A x A z x y A ¬ x y
3 simpr z x y A ¬ x y y A ¬ x y
4 3 reximi x A z x y A ¬ x y x A y A ¬ x y
5 2 4 syl A dom card z A x x A 𝒫 x Fin A x A y A ¬ x y
6 5 3exp A dom card z A x x A 𝒫 x Fin A x A y A ¬ x y
7 6 exlimdv A dom card z z A x x A 𝒫 x Fin A x A y A ¬ x y
8 1 7 syl5bi A dom card A x x A 𝒫 x Fin A x A y A ¬ x y
9 8 3imp A dom card A x x A 𝒫 x Fin A x A y A ¬ x y