Metamath Proof Explorer


Theorem ttukeylem1

Description: Lemma for ttukey . Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φ F : card A B 1-1 onto A B
ttukeylem.2 φ B A
ttukeylem.3 φ x x A 𝒫 x Fin A
Assertion ttukeylem1 φ C A 𝒫 C Fin A

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φ F : card A B 1-1 onto A B
2 ttukeylem.2 φ B A
3 ttukeylem.3 φ x x A 𝒫 x Fin A
4 elex C A C V
5 4 a1i φ C A C V
6 id 𝒫 C Fin A 𝒫 C Fin A
7 ssun1 A A B
8 undif1 A B B = A B
9 7 8 sseqtrri A A B B
10 fvex card A B V
11 f1ofo F : card A B 1-1 onto A B F : card A B onto A B
12 1 11 syl φ F : card A B onto A B
13 fornex card A B V F : card A B onto A B A B V
14 10 12 13 mpsyl φ A B V
15 unexg A B V B A A B B V
16 14 2 15 syl2anc φ A B B V
17 ssexg A A B B A B B V A V
18 9 16 17 sylancr φ A V
19 uniexb A V A V
20 18 19 sylibr φ A V
21 ssexg 𝒫 C Fin A A V 𝒫 C Fin V
22 6 20 21 syl2anr φ 𝒫 C Fin A 𝒫 C Fin V
23 infpwfidom 𝒫 C Fin V C 𝒫 C Fin
24 reldom Rel
25 24 brrelex1i C 𝒫 C Fin C V
26 22 23 25 3syl φ 𝒫 C Fin A C V
27 26 ex φ 𝒫 C Fin A C V
28 eleq1 x = C x A C A
29 pweq x = C 𝒫 x = 𝒫 C
30 29 ineq1d x = C 𝒫 x Fin = 𝒫 C Fin
31 30 sseq1d x = C 𝒫 x Fin A 𝒫 C Fin A
32 28 31 bibi12d x = C x A 𝒫 x Fin A C A 𝒫 C Fin A
33 32 spcgv C V x x A 𝒫 x Fin A C A 𝒫 C Fin A
34 3 33 syl5com φ C V C A 𝒫 C Fin A
35 5 27 34 pm5.21ndd φ C A 𝒫 C Fin A