Metamath Proof Explorer


Theorem ttukeylem2

Description: Lemma for ttukey . A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φ F : card A B 1-1 onto A B
ttukeylem.2 φ B A
ttukeylem.3 φ x x A 𝒫 x Fin A
Assertion ttukeylem2 φ C A D C D A

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φ F : card A B 1-1 onto A B
2 ttukeylem.2 φ B A
3 ttukeylem.3 φ x x A 𝒫 x Fin A
4 simpr φ D C D C
5 4 sspwd φ D C 𝒫 D 𝒫 C
6 ssrin 𝒫 D 𝒫 C 𝒫 D Fin 𝒫 C Fin
7 sstr2 𝒫 D Fin 𝒫 C Fin 𝒫 C Fin A 𝒫 D Fin A
8 5 6 7 3syl φ D C 𝒫 C Fin A 𝒫 D Fin A
9 1 2 3 ttukeylem1 φ C A 𝒫 C Fin A
10 9 adantr φ D C C A 𝒫 C Fin A
11 1 2 3 ttukeylem1 φ D A 𝒫 D Fin A
12 11 adantr φ D C D A 𝒫 D Fin A
13 8 10 12 3imtr4d φ D C C A D A
14 13 impancom φ C A D C D A
15 14 impr φ C A D C D A