Step |
Hyp |
Ref |
Expression |
1 |
|
ttukeylem.1 |
|
2 |
|
ttukeylem.2 |
|
3 |
|
ttukeylem.3 |
|
4 |
|
ttukeylem.4 |
|
5 |
4
|
tfr2 |
|
6 |
5
|
adantl |
|
7 |
|
eqidd |
|
8 |
|
simpr |
|
9 |
8
|
dmeqd |
|
10 |
4
|
tfr1 |
|
11 |
|
onss |
|
12 |
11
|
ad2antlr |
|
13 |
|
fnssres |
|
14 |
10 12 13
|
sylancr |
|
15 |
14
|
fndmd |
|
16 |
9 15
|
eqtrd |
|
17 |
16
|
unieqd |
|
18 |
16 17
|
eqeq12d |
|
19 |
16
|
eqeq1d |
|
20 |
8
|
rneqd |
|
21 |
|
df-ima |
|
22 |
20 21
|
eqtr4di |
|
23 |
22
|
unieqd |
|
24 |
19 23
|
ifbieq2d |
|
25 |
8 17
|
fveq12d |
|
26 |
17
|
fveq2d |
|
27 |
26
|
sneqd |
|
28 |
25 27
|
uneq12d |
|
29 |
28
|
eleq1d |
|
30 |
|
eqidd |
|
31 |
29 27 30
|
ifbieq12d |
|
32 |
25 31
|
uneq12d |
|
33 |
18 24 32
|
ifbieq12d |
|
34 |
|
onuni |
|
35 |
34
|
ad3antlr |
|
36 |
|
sucidg |
|
37 |
35 36
|
syl |
|
38 |
|
eloni |
|
39 |
38
|
ad2antlr |
|
40 |
|
orduniorsuc |
|
41 |
39 40
|
syl |
|
42 |
41
|
orcanai |
|
43 |
37 42
|
eleqtrrd |
|
44 |
43
|
fvresd |
|
45 |
44
|
uneq1d |
|
46 |
45
|
eleq1d |
|
47 |
46
|
ifbid |
|
48 |
44 47
|
uneq12d |
|
49 |
48
|
ifeq2da |
|
50 |
33 49
|
eqtrd |
|
51 |
|
fnfun |
|
52 |
10 51
|
ax-mp |
|
53 |
|
simpr |
|
54 |
|
resfunexg |
|
55 |
52 53 54
|
sylancr |
|
56 |
2
|
elexd |
|
57 |
|
funimaexg |
|
58 |
52 57
|
mpan |
|
59 |
58
|
uniexd |
|
60 |
|
ifcl |
|
61 |
56 59 60
|
syl2an |
|
62 |
|
fvex |
|
63 |
|
snex |
|
64 |
|
0ex |
|
65 |
63 64
|
ifex |
|
66 |
62 65
|
unex |
|
67 |
|
ifcl |
|
68 |
61 66 67
|
sylancl |
|
69 |
7 50 55 68
|
fvmptd |
|
70 |
6 69
|
eqtrd |
|