Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
ttukeylem4
Next ⟩
ttukeylem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
ttukeylem4
Description:
Lemma for
ttukey
.
(Contributed by
Mario Carneiro
, 15-May-2015)
Ref
Expression
Hypotheses
ttukeylem.1
⊢
φ
→
F
:
card
⁡
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
ttukeylem.2
⊢
φ
→
B
∈
A
ttukeylem.3
⊢
φ
→
∀
x
x
∈
A
↔
𝒫
x
∩
Fin
⊆
A
ttukeylem.4
⊢
G
=
recs
⁡
z
∈
V
⟼
if
dom
⁡
z
=
⋃
dom
⁡
z
if
dom
⁡
z
=
∅
B
⋃
ran
⁡
z
z
⁡
⋃
dom
⁡
z
∪
if
z
⁡
⋃
dom
⁡
z
∪
F
⁡
⋃
dom
⁡
z
∈
A
F
⁡
⋃
dom
⁡
z
∅
Assertion
ttukeylem4
⊢
φ
→
G
⁡
∅
=
B
Proof
Step
Hyp
Ref
Expression
1
ttukeylem.1
⊢
φ
→
F
:
card
⁡
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
2
ttukeylem.2
⊢
φ
→
B
∈
A
3
ttukeylem.3
⊢
φ
→
∀
x
x
∈
A
↔
𝒫
x
∩
Fin
⊆
A
4
ttukeylem.4
⊢
G
=
recs
⁡
z
∈
V
⟼
if
dom
⁡
z
=
⋃
dom
⁡
z
if
dom
⁡
z
=
∅
B
⋃
ran
⁡
z
z
⁡
⋃
dom
⁡
z
∪
if
z
⁡
⋃
dom
⁡
z
∪
F
⁡
⋃
dom
⁡
z
∈
A
F
⁡
⋃
dom
⁡
z
∅
5
0elon
⊢
∅
∈
On
6
1
2
3
4
ttukeylem3
⊢
φ
∧
∅
∈
On
→
G
⁡
∅
=
if
∅
=
⋃
∅
if
∅
=
∅
B
⋃
G
∅
G
⁡
⋃
∅
∪
if
G
⁡
⋃
∅
∪
F
⁡
⋃
∅
∈
A
F
⁡
⋃
∅
∅
7
5
6
mpan2
⊢
φ
→
G
⁡
∅
=
if
∅
=
⋃
∅
if
∅
=
∅
B
⋃
G
∅
G
⁡
⋃
∅
∪
if
G
⁡
⋃
∅
∪
F
⁡
⋃
∅
∈
A
F
⁡
⋃
∅
∅
8
uni0
⊢
⋃
∅
=
∅
9
8
eqcomi
⊢
∅
=
⋃
∅
10
9
iftruei
⊢
if
∅
=
⋃
∅
if
∅
=
∅
B
⋃
G
∅
G
⁡
⋃
∅
∪
if
G
⁡
⋃
∅
∪
F
⁡
⋃
∅
∈
A
F
⁡
⋃
∅
∅
=
if
∅
=
∅
B
⋃
G
∅
11
eqid
⊢
∅
=
∅
12
11
iftruei
⊢
if
∅
=
∅
B
⋃
G
∅
=
B
13
10
12
eqtri
⊢
if
∅
=
⋃
∅
if
∅
=
∅
B
⋃
G
∅
G
⁡
⋃
∅
∪
if
G
⁡
⋃
∅
∪
F
⁡
⋃
∅
∈
A
F
⁡
⋃
∅
∅
=
B
14
7
13
eqtrdi
⊢
φ
→
G
⁡
∅
=
B