Metamath Proof Explorer


Theorem tustps

Description: A constructed uniform space is a topological space. (Contributed by Thierry Arnoux, 25-Jan-2018)

Ref Expression
Hypothesis tuslem.k K = toUnifSp U
Assertion tustps U UnifOn X K TopSp

Proof

Step Hyp Ref Expression
1 tuslem.k K = toUnifSp U
2 utoptopon U UnifOn X unifTop U TopOn X
3 eqid unifTop U = unifTop U
4 1 3 tustopn U UnifOn X unifTop U = TopOpen K
5 1 tusbas U UnifOn X X = Base K
6 5 fveq2d U UnifOn X TopOn X = TopOn Base K
7 2 4 6 3eltr3d U UnifOn X TopOpen K TopOn Base K
8 eqid Base K = Base K
9 eqid TopOpen K = TopOpen K
10 8 9 istps K TopSp TopOpen K TopOn Base K
11 7 10 sylibr U UnifOn X K TopSp