Metamath Proof Explorer


Theorem tususp

Description: A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypothesis tuslem.k K = toUnifSp U
Assertion tususp U UnifOn X K UnifSp

Proof

Step Hyp Ref Expression
1 tuslem.k K = toUnifSp U
2 id U UnifOn X U UnifOn X
3 1 tususs U UnifOn X U = UnifSt K
4 1 tusbas U UnifOn X X = Base K
5 4 fveq2d U UnifOn X UnifOn X = UnifOn Base K
6 2 3 5 3eltr3d U UnifOn X UnifSt K UnifOn Base K
7 1 tusunif U UnifOn X U = UnifSet K
8 7 fveq2d U UnifOn X unifTop U = unifTop UnifSet K
9 1 tuslem U UnifOn X X = Base K U = UnifSet K unifTop U = TopOpen K
10 9 simp3d U UnifOn X unifTop U = TopOpen K
11 7 3 eqtr3d U UnifOn X UnifSet K = UnifSt K
12 11 fveq2d U UnifOn X unifTop UnifSet K = unifTop UnifSt K
13 8 10 12 3eqtr3d U UnifOn X TopOpen K = unifTop UnifSt K
14 eqid Base K = Base K
15 eqid UnifSt K = UnifSt K
16 eqid TopOpen K = TopOpen K
17 14 15 16 isusp K UnifSp UnifSt K UnifOn Base K TopOpen K = unifTop UnifSt K
18 6 13 17 sylanbrc U UnifOn X K UnifSp