Metamath Proof Explorer


Theorem tvclvec

Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tvclvec W TopVec W LVec

Proof

Step Hyp Ref Expression
1 tvclmod W TopVec W LMod
2 eqid Scalar W = Scalar W
3 2 tvctdrg W TopVec Scalar W TopDRing
4 tdrgdrng Scalar W TopDRing Scalar W DivRing
5 3 4 syl W TopVec Scalar W DivRing
6 2 islvec W LVec W LMod Scalar W DivRing
7 1 5 6 sylanbrc W TopVec W LVec