Metamath Proof Explorer


Theorem twonotinotbothi

Description: From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020)

Ref Expression
Hypotheses twonotinotbothi.1 ¬ φ ψ
twonotinotbothi.2 ¬ χ θ
Assertion twonotinotbothi ¬ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 twonotinotbothi.1 ¬ φ ψ
2 twonotinotbothi.2 ¬ χ θ
3 1 orci ¬ φ ψ ¬ χ θ
4 pm3.14 ¬ φ ψ ¬ χ θ ¬ φ ψ χ θ
5 3 4 ax-mp ¬ φ ψ χ θ