Metamath Proof Explorer


Theorem txbas

Description: The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis txval.1 B = ran x R , y S x × y
Assertion txbas R TopBases S TopBases B TopBases

Proof

Step Hyp Ref Expression
1 txval.1 B = ran x R , y S x × y
2 xpeq1 x = a x × y = a × y
3 xpeq2 y = b a × y = a × b
4 2 3 cbvmpov x R , y S x × y = a R , b S a × b
5 4 rnmpo ran x R , y S x × y = u | a R b S u = a × b
6 1 5 eqtri B = u | a R b S u = a × b
7 6 abeq2i u B a R b S u = a × b
8 xpeq1 x = c x × y = c × y
9 xpeq2 y = d c × y = c × d
10 8 9 cbvmpov x R , y S x × y = c R , d S c × d
11 10 rnmpo ran x R , y S x × y = v | c R d S v = c × d
12 1 11 eqtri B = v | c R d S v = c × d
13 12 abeq2i v B c R d S v = c × d
14 7 13 anbi12i u B v B a R b S u = a × b c R d S v = c × d
15 reeanv a R c R b S u = a × b d S v = c × d a R b S u = a × b c R d S v = c × d
16 14 15 bitr4i u B v B a R c R b S u = a × b d S v = c × d
17 reeanv b S d S u = a × b v = c × d b S u = a × b d S v = c × d
18 basis2 R TopBases a R c R u a c x R u x x a c
19 18 exp43 R TopBases a R c R u a c x R u x x a c
20 19 imp42 R TopBases a R c R u a c x R u x x a c
21 basis2 S TopBases b S d S v b d y S v y y b d
22 21 exp43 S TopBases b S d S v b d y S v y y b d
23 22 imp42 S TopBases b S d S v b d y S v y y b d
24 reeanv x R y S u x x a c v y y b d x R u x x a c y S v y y b d
25 opelxpi u x v y u v x × y
26 xpss12 x a c y b d x × y a c × b d
27 25 26 anim12i u x v y x a c y b d u v x × y x × y a c × b d
28 27 an4s u x x a c v y y b d u v x × y x × y a c × b d
29 28 reximi y S u x x a c v y y b d y S u v x × y x × y a c × b d
30 29 reximi x R y S u x x a c v y y b d x R y S u v x × y x × y a c × b d
31 24 30 sylbir x R u x x a c y S v y y b d x R y S u v x × y x × y a c × b d
32 20 23 31 syl2an R TopBases a R c R u a c S TopBases b S d S v b d x R y S u v x × y x × y a c × b d
33 32 an4s R TopBases a R c R S TopBases b S d S u a c v b d x R y S u v x × y x × y a c × b d
34 33 ralrimivva R TopBases a R c R S TopBases b S d S u a c v b d x R y S u v x × y x × y a c × b d
35 eleq1 p = u v p x × y u v x × y
36 35 anbi1d p = u v p x × y x × y a c × b d u v x × y x × y a c × b d
37 36 2rexbidv p = u v x R y S p x × y x × y a c × b d x R y S u v x × y x × y a c × b d
38 37 ralxp p a c × b d x R y S p x × y x × y a c × b d u a c v b d x R y S u v x × y x × y a c × b d
39 34 38 sylibr R TopBases a R c R S TopBases b S d S p a c × b d x R y S p x × y x × y a c × b d
40 39 an4s R TopBases S TopBases a R c R b S d S p a c × b d x R y S p x × y x × y a c × b d
41 40 anassrs R TopBases S TopBases a R c R b S d S p a c × b d x R y S p x × y x × y a c × b d
42 ineq12 u = a × b v = c × d u v = a × b c × d
43 inxp a × b c × d = a c × b d
44 42 43 eqtrdi u = a × b v = c × d u v = a c × b d
45 44 sseq2d u = a × b v = c × d t u v t a c × b d
46 45 anbi2d u = a × b v = c × d p t t u v p t t a c × b d
47 46 rexbidv u = a × b v = c × d t B p t t u v t B p t t a c × b d
48 1 rexeqi t B p t t a c × b d t ran x R , y S x × y p t t a c × b d
49 fvex 1 st z V
50 fvex 2 nd z V
51 49 50 xpex 1 st z × 2 nd z V
52 51 rgenw z R × S 1 st z × 2 nd z V
53 vex x V
54 vex y V
55 53 54 op1std z = x y 1 st z = x
56 53 54 op2ndd z = x y 2 nd z = y
57 55 56 xpeq12d z = x y 1 st z × 2 nd z = x × y
58 57 mpompt z R × S 1 st z × 2 nd z = x R , y S x × y
59 58 eqcomi x R , y S x × y = z R × S 1 st z × 2 nd z
60 eleq2 t = 1 st z × 2 nd z p t p 1 st z × 2 nd z
61 sseq1 t = 1 st z × 2 nd z t a c × b d 1 st z × 2 nd z a c × b d
62 60 61 anbi12d t = 1 st z × 2 nd z p t t a c × b d p 1 st z × 2 nd z 1 st z × 2 nd z a c × b d
63 59 62 rexrnmptw z R × S 1 st z × 2 nd z V t ran x R , y S x × y p t t a c × b d z R × S p 1 st z × 2 nd z 1 st z × 2 nd z a c × b d
64 52 63 ax-mp t ran x R , y S x × y p t t a c × b d z R × S p 1 st z × 2 nd z 1 st z × 2 nd z a c × b d
65 57 eleq2d z = x y p 1 st z × 2 nd z p x × y
66 57 sseq1d z = x y 1 st z × 2 nd z a c × b d x × y a c × b d
67 65 66 anbi12d z = x y p 1 st z × 2 nd z 1 st z × 2 nd z a c × b d p x × y x × y a c × b d
68 67 rexxp z R × S p 1 st z × 2 nd z 1 st z × 2 nd z a c × b d x R y S p x × y x × y a c × b d
69 48 64 68 3bitri t B p t t a c × b d x R y S p x × y x × y a c × b d
70 47 69 bitrdi u = a × b v = c × d t B p t t u v x R y S p x × y x × y a c × b d
71 44 70 raleqbidv u = a × b v = c × d p u v t B p t t u v p a c × b d x R y S p x × y x × y a c × b d
72 41 71 syl5ibrcom R TopBases S TopBases a R c R b S d S u = a × b v = c × d p u v t B p t t u v
73 72 rexlimdvva R TopBases S TopBases a R c R b S d S u = a × b v = c × d p u v t B p t t u v
74 17 73 syl5bir R TopBases S TopBases a R c R b S u = a × b d S v = c × d p u v t B p t t u v
75 74 rexlimdvva R TopBases S TopBases a R c R b S u = a × b d S v = c × d p u v t B p t t u v
76 16 75 syl5bi R TopBases S TopBases u B v B p u v t B p t t u v
77 76 ralrimivv R TopBases S TopBases u B v B p u v t B p t t u v
78 1 txbasex R TopBases S TopBases B V
79 isbasis2g B V B TopBases u B v B p u v t B p t t u v
80 78 79 syl R TopBases S TopBases B TopBases u B v B p u v t B p t t u v
81 77 80 mpbird R TopBases S TopBases B TopBases